Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.

Identifieur interne : 000425 ( Main/Exploration ); précédent : 000424; suivant : 000426

Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.

Auteurs : Long-Bin Zhang [République populaire de Chine] ; Li Tang [République populaire de Chine] ; Sheng-Hua Ying [République populaire de Chine] ; Ming-Guang Feng [République populaire de Chine]

Source :

RBID : pubmed:26969041

Descripteurs français

English descriptors

Abstract

Multiple glutaredoxins (Grx) and glutathione reductase (Glr) are vital for the thiol-disulfide redox system in budding yeast but generally unexplored in filamentous fungi. Here we characterized the Beauveria bassiana redox system comprising dithiol Grx1, monothiol Grx2-4, Grx-like Grx5, and Glr orthologue. Each grx or glr deletion was compensated by increased transcripts of some other grx genes in normal cultures. Particularly, grx3 compensated the absence of grx1, grx2, grx5, or glr under oxidative stress while its absence was compensated only by undeletable grx4 under normal conditions but by most of other undeleted grx and glr genes in response to menadione. Consequently, the redox state was disturbed in Δglr more than in Δgrx3 but not in Δgrx1/2/5. Superoxide dismutases were more active in normal Δgrx1-3 cultures but less in Δgrx5 or Δglr response to menadione. Total catalase activity increased differentially in all the mutant cultures stressed with or without H2O2 while total peroxidase activity decreased more in the normal or H2O2-stressed culture of Δglr than of Δgrx3. Among the mutants, Δgrx3 showed slightly increased sensitivity to menadione or H2O2; Δglr exhibited greater sensitivity to thiol-oxidizing diamide than thiol-reducing 1-chloro-2,4-dinitrobenzene as well as increased sensitivity to the two oxidants. Intriguingly, all the mutants grew slower in a Fe(3+)-inclusive medium perhaps due to elevated transcripts of two Fe(3+) transporter genes. More or fewer phenotypes linked with biocontrol potential were altered in four deletion mutants excluding Δgrx5. All the changes were restored by targeted gene complementation. Overall, Grx3 played more critical role than other Grx homologues in the Glr-dependent redox system of the fungal entomopathogen.

DOI: 10.1007/s00253-016-7420-0
PubMed: 26969041


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.</title>
<author>
<name sortKey="Zhang, Long Bin" sort="Zhang, Long Bin" uniqKey="Zhang L" first="Long-Bin" last="Zhang">Long-Bin Zhang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tang, Li" sort="Tang, Li" uniqKey="Tang L" first="Li" last="Tang">Li Tang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ying, Sheng Hua" sort="Ying, Sheng Hua" uniqKey="Ying S" first="Sheng-Hua" last="Ying">Sheng-Hua Ying</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Ming Guang" sort="Feng, Ming Guang" uniqKey="Feng M" first="Ming-Guang" last="Feng">Ming-Guang Feng</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China. mgfeng@zju.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26969041</idno>
<idno type="pmid">26969041</idno>
<idno type="doi">10.1007/s00253-016-7420-0</idno>
<idno type="wicri:Area/Main/Corpus">000452</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000452</idno>
<idno type="wicri:Area/Main/Curation">000452</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000452</idno>
<idno type="wicri:Area/Main/Exploration">000452</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.</title>
<author>
<name sortKey="Zhang, Long Bin" sort="Zhang, Long Bin" uniqKey="Zhang L" first="Long-Bin" last="Zhang">Long-Bin Zhang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tang, Li" sort="Tang, Li" uniqKey="Tang L" first="Li" last="Tang">Li Tang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ying, Sheng Hua" sort="Ying, Sheng Hua" uniqKey="Ying S" first="Sheng-Hua" last="Ying">Sheng-Hua Ying</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Ming Guang" sort="Feng, Ming Guang" uniqKey="Feng M" first="Ming-Guang" last="Feng">Ming-Guang Feng</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China. mgfeng@zju.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang</wicri:regionArea>
<orgName type="university">Université de Zhejiang</orgName>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied microbiology and biotechnology</title>
<idno type="eISSN">1432-0614</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Beauveria (enzymology)</term>
<term>Beauveria (genetics)</term>
<term>Beauveria (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Reductase (genetics)</term>
<term>Glutathione Reductase (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Superoxide Dismutase (genetics)</term>
<term>Superoxide Dismutase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antioxydants (métabolisme)</term>
<term>Beauveria (enzymologie)</term>
<term>Beauveria (génétique)</term>
<term>Beauveria (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione reductase (génétique)</term>
<term>Glutathione reductase (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Superoxide dismutase (génétique)</term>
<term>Superoxide dismutase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glutaredoxins</term>
<term>Glutathione Reductase</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Fungal Proteins</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Reductase</term>
<term>Iron</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Beauveria</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Beauveria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Beauveria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Beauveria</term>
<term>Glutarédoxines</term>
<term>Glutathione reductase</term>
<term>Protéines fongiques</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Beauveria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Beauveria</term>
<term>Fer</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Glutathione reductase</term>
<term>Protéines fongiques</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Homeostasis</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Homéostasie</term>
<term>Mutation</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Multiple glutaredoxins (Grx) and glutathione reductase (Glr) are vital for the thiol-disulfide redox system in budding yeast but generally unexplored in filamentous fungi. Here we characterized the Beauveria bassiana redox system comprising dithiol Grx1, monothiol Grx2-4, Grx-like Grx5, and Glr orthologue. Each grx or glr deletion was compensated by increased transcripts of some other grx genes in normal cultures. Particularly, grx3 compensated the absence of grx1, grx2, grx5, or glr under oxidative stress while its absence was compensated only by undeletable grx4 under normal conditions but by most of other undeleted grx and glr genes in response to menadione. Consequently, the redox state was disturbed in Δglr more than in Δgrx3 but not in Δgrx1/2/5. Superoxide dismutases were more active in normal Δgrx1-3 cultures but less in Δgrx5 or Δglr response to menadione. Total catalase activity increased differentially in all the mutant cultures stressed with or without H2O2 while total peroxidase activity decreased more in the normal or H2O2-stressed culture of Δglr than of Δgrx3. Among the mutants, Δgrx3 showed slightly increased sensitivity to menadione or H2O2; Δglr exhibited greater sensitivity to thiol-oxidizing diamide than thiol-reducing 1-chloro-2,4-dinitrobenzene as well as increased sensitivity to the two oxidants. Intriguingly, all the mutants grew slower in a Fe(3+)-inclusive medium perhaps due to elevated transcripts of two Fe(3+) transporter genes. More or fewer phenotypes linked with biocontrol potential were altered in four deletion mutants excluding Δgrx5. All the changes were restored by targeted gene complementation. Overall, Grx3 played more critical role than other Grx homologues in the Glr-dependent redox system of the fungal entomopathogen. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26969041</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>01</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>01</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0614</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>100</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Applied microbiology and biotechnology</Title>
<ISOAbbreviation>Appl Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.</ArticleTitle>
<Pagination>
<MedlinePgn>5907-17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00253-016-7420-0</ELocationID>
<Abstract>
<AbstractText>Multiple glutaredoxins (Grx) and glutathione reductase (Glr) are vital for the thiol-disulfide redox system in budding yeast but generally unexplored in filamentous fungi. Here we characterized the Beauveria bassiana redox system comprising dithiol Grx1, monothiol Grx2-4, Grx-like Grx5, and Glr orthologue. Each grx or glr deletion was compensated by increased transcripts of some other grx genes in normal cultures. Particularly, grx3 compensated the absence of grx1, grx2, grx5, or glr under oxidative stress while its absence was compensated only by undeletable grx4 under normal conditions but by most of other undeleted grx and glr genes in response to menadione. Consequently, the redox state was disturbed in Δglr more than in Δgrx3 but not in Δgrx1/2/5. Superoxide dismutases were more active in normal Δgrx1-3 cultures but less in Δgrx5 or Δglr response to menadione. Total catalase activity increased differentially in all the mutant cultures stressed with or without H2O2 while total peroxidase activity decreased more in the normal or H2O2-stressed culture of Δglr than of Δgrx3. Among the mutants, Δgrx3 showed slightly increased sensitivity to menadione or H2O2; Δglr exhibited greater sensitivity to thiol-oxidizing diamide than thiol-reducing 1-chloro-2,4-dinitrobenzene as well as increased sensitivity to the two oxidants. Intriguingly, all the mutants grew slower in a Fe(3+)-inclusive medium perhaps due to elevated transcripts of two Fe(3+) transporter genes. More or fewer phenotypes linked with biocontrol potential were altered in four deletion mutants excluding Δgrx5. All the changes were restored by targeted gene complementation. Overall, Grx3 played more critical role than other Grx homologues in the Glr-dependent redox system of the fungal entomopathogen. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Long-Bin</ForeName>
<Initials>LB</Initials>
<AffiliationInfo>
<Affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ying</LastName>
<ForeName>Sheng-Hua</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Ming-Guang</ForeName>
<Initials>MG</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2657-0293</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China. mgfeng@zju.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Appl Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>8406612</NlmUniqueID>
<ISSNLinking>0175-7598</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.7</RegistryNumber>
<NameOfSubstance UI="D005980">Glutathione Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052982" MajorTopicYN="N">Beauveria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005980" MajorTopicYN="N">Glutathione Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antioxidation</Keyword>
<Keyword MajorTopicYN="N">Biological control potential</Keyword>
<Keyword MajorTopicYN="N">Entomopathogenic fungi</Keyword>
<Keyword MajorTopicYN="N">Gene expression and regulation</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxins</Keyword>
<Keyword MajorTopicYN="N">Glutathione reductase</Keyword>
<Keyword MajorTopicYN="N">Redox homeostasis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26969041</ArticleId>
<ArticleId IdType="doi">10.1007/s00253-016-7420-0</ArticleId>
<ArticleId IdType="pii">10.1007/s00253-016-7420-0</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Zhejiang</li>
</region>
<settlement>
<li>Hangzhou</li>
</settlement>
<orgName>
<li>Université de Zhejiang</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Zhejiang">
<name sortKey="Zhang, Long Bin" sort="Zhang, Long Bin" uniqKey="Zhang L" first="Long-Bin" last="Zhang">Long-Bin Zhang</name>
</region>
<name sortKey="Feng, Ming Guang" sort="Feng, Ming Guang" uniqKey="Feng M" first="Ming-Guang" last="Feng">Ming-Guang Feng</name>
<name sortKey="Tang, Li" sort="Tang, Li" uniqKey="Tang L" first="Li" last="Tang">Li Tang</name>
<name sortKey="Ying, Sheng Hua" sort="Ying, Sheng Hua" uniqKey="Ying S" first="Sheng-Hua" last="Ying">Sheng-Hua Ying</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000425 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000425 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26969041
   |texte=   Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26969041" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020